

21PW1400/Fe LOW FREQUENCY TRANSDUCER

Preliminary Data Sheet

KEY FEATURES

- High power handling: 1400 WAES
- Malt Cross[®] Cooling System
- Lower power compression looses
- High sensitivity: 98,5 dB
- FEA optimized ferrite magnetic circuit
- Designed with MMSS technology for high control, linearity and low harmonic distortion
- Optimized nonlinear parameters
- · Waterproof cone with treatment for both sides of the cone
- 4" DUO double layer inner/outer voice coil
- Aluminium demodulating ring
- Extended controlled displacement: X_{max} ± 10 mm.
- Massive mechanical displacement capability: X_{damage} ± 55 mm.

TECHNICAL SPECIFICATIONS

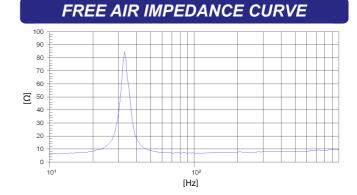
Nominal diameter	540 mm 21 in
Rated impedance	8 Ω
Minimum impedance	6,81 Ω
Power capacity*	1.400 W _{AES}
Program power	2.800 W
Sensitivity	98,5 dB @ 1W @ Z _N
Frequency range	25 - 1.200 Hz
Recom. enclosure vol.	100 / 250 I 3,5 / 8,75 ft ³
Voice coil diameter	100 mm 4 in
BI factor	27,6 N/A
Moving mass	0,316 kg
Voice coil length	25 mm
Air gap height	12 mm
X _{damage} (peak to peak)	55 mm

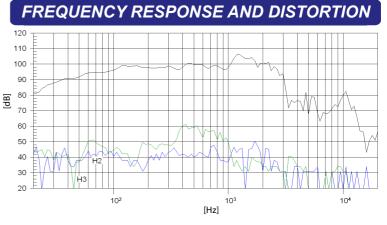
THIELE-SMALL PARAMETERS**

Resonant frequency, f _s D.C. Voice coil resistance, R _e Mechanical Quality Factor, Q _{ms}	33 Hz 4,9 Ω 6,66
Electrical Quality Factor, Q _{es}	0,42
Total Quality Factor, Q _{ts}	0,39
Equivalent Air Volume to C _{ms} , V _{as}	310,2 I
Mechanical Compliance, C _{ms}	73 μm / N
Mechanical Resistance, R _{ms}	9,89 kg / s
Efficiency, η ₀	2,55 %
Effective Surface Area, S _d	0,1734 m ²
Maximum Displacement, X _{max} ***	10 mm
Displacement Volume, V _d	1729 cm ³
Voice Coil Inductance, L _e	1,2 mH

Notes

* The power capaticty is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.


** T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).


*** The X_{max} is calculated as $(L_{vc} - H_{ag})/2 + (H_{ag}/3,5)$, where L_{vc} is the voice coil length and H_{ag} is the air gap height.

MOUNTING INFORMATION

Overall diameter Bolt circle diameter	550 mm 526 mm	21,65 in 20,71 in
Baffle cutout diameter:		
- Front mount	494 mm	19,45 in
- Rear mount	511 mm	20,12 in
Depth	254 mm	10,0 in
Net weight	19,9 kg	43,87 lb

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m